3.4.78 \(\int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {5}{2}}(c+d x)} \, dx\) [378]

3.4.78.1 Optimal result
3.4.78.2 Mathematica [C] (verified)
3.4.78.3 Rubi [A] (verified)
3.4.78.4 Maple [A] (verified)
3.4.78.5 Fricas [A] (verification not implemented)
3.4.78.6 Sympy [F(-1)]
3.4.78.7 Maxima [F]
3.4.78.8 Giac [F(-1)]
3.4.78.9 Mupad [F(-1)]

3.4.78.1 Optimal result

Integrand size = 25, antiderivative size = 214 \[ \int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {3 \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{a^{3/2} d}+\frac {9 \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}-\frac {\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)}+\frac {3 \sin (c+d x)}{2 a d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \]

output
-1/2*sin(d*x+c)/d/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2)+3/2*sin(d*x+c)/a 
/d/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2)-3*arcsin(sin(d*x+c)*a^(1/2)/(a+ 
a*cos(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(3/2)/d+9/4*arcta 
n(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))* 
cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(3/2)/d*2^(1/2)
 
3.4.78.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 4.71 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.14 \[ \int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\cos ^3\left (\frac {1}{2} (c+d x)\right ) \left (3 i \sqrt {2} e^{-\frac {1}{2} i (c+d x)} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \left (2 \text {arcsinh}\left (e^{i (c+d x)}\right )+3 \sqrt {2} \text {arctanh}\left (\frac {1-e^{i (c+d x)}}{\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}}\right )-2 \text {arctanh}\left (\sqrt {1+e^{2 i (c+d x)}}\right )\right )+\sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (-\sin \left (\frac {1}{2} (c+d x)\right )+2 \sin \left (\frac {3}{2} (c+d x)\right )+\sin \left (\frac {5}{2} (c+d x)\right )\right )\right )}{2 d (a (1+\cos (c+d x)))^{3/2}} \]

input
Integrate[1/((a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(5/2)),x]
 
output
(Cos[(c + d*x)/2]^3*(((3*I)*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c 
+ d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*(2*ArcSinh[E^(I*(c + d*x))] + 3*Sq 
rt[2]*ArcTanh[(1 - E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))] 
)] - 2*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]]))/E^((I/2)*(c + d*x)) + Sec[ 
(c + d*x)/2]^2*Sqrt[Sec[c + d*x]]*(-Sin[(c + d*x)/2] + 2*Sin[(3*(c + d*x)) 
/2] + Sin[(5*(c + d*x))/2])))/(2*d*(a*(1 + Cos[c + d*x]))^(3/2))
 
3.4.78.3 Rubi [A] (verified)

Time = 1.12 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.95, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3042, 4710, 3042, 3244, 27, 3042, 3462, 25, 3042, 3461, 3042, 3253, 223, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(\cos (c+d x) a+a)^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 3244

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {\int \frac {3 \sqrt {\cos (c+d x)} (a-2 a \cos (c+d x))}{2 \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \int \frac {\sqrt {\cos (c+d x)} (a-2 a \cos (c+d x))}{\sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a-2 a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3462

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (\frac {\int -\frac {a^2-2 a^2 \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{a}-\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (-\frac {\int \frac {a^2-2 a^2 \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{a}-\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (-\frac {\int \frac {a^2-2 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}-\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3461

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (-\frac {3 a^2 \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx-2 a \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx}{a}-\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (-\frac {3 a^2 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-2 a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}-\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3253

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (-\frac {3 a^2 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {4 a \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}}{a}-\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 223

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (-\frac {3 a^2 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {4 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{a}-\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3261

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (-\frac {-\frac {6 a^3 \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {4 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{a}-\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {3 \left (-\frac {\frac {3 \sqrt {2} a^{3/2} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {4 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{a}-\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )}{4 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

input
Int[1/((a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(5/2)),x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/2*(Cos[c + d*x]^(3/2)*Sin[c + d* 
x])/(d*(a + a*Cos[c + d*x])^(3/2)) - (3*(-(((-4*a^(3/2)*ArcSin[(Sqrt[a]*Si 
n[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (3*Sqrt[2]*a^(3/2)*ArcTan[(Sqrt 
[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/ 
d)/a) - (2*a*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]) 
))/(4*a^2))
 

3.4.78.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3244
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e 
+ f*x])^m*((c + d*Sin[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Simp[1/(a*b* 
(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)* 
Simp[b*(c^2*(m + 1) + d^2*(n - 1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) 
 + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && 
 NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] 
&& GtQ[n, 1] && (IntegersQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3461
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Sim 
p[(A*b - a*B)/b   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]) 
, x], x] + Simp[B/b   Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]] 
, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3462
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(f*(m + 
n + 1))), x] + Simp[1/(b*(m + n + 1))   Int[(a + b*Sin[e + f*x])^m*(c + d*S 
in[e + f*x])^(n - 1)*Simp[A*b*c*(m + n + 1) + B*(a*c*m + b*d*n) + (A*b*d*(m 
 + n + 1) + B*(a*d*m + b*c*n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
- d^2, 0] && GtQ[n, 0] && (IntegerQ[n] || EqQ[m + 1/2, 0])
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
3.4.78.4 Maple [A] (verified)

Time = 15.05 (sec) , antiderivative size = 240, normalized size of antiderivative = 1.12

method result size
default \(\frac {\left (2 \sqrt {2}\, \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+3 \sin \left (d x +c \right ) \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-6 \sqrt {2}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \cos \left (d x +c \right )-6 \sqrt {2}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )-9 \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \cos \left (d x +c \right )-9 \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{4 d \sqrt {\sec \left (d x +c \right )}\, \left (1+\cos \left (d x +c \right )\right )^{2} \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a^{2}}\) \(240\)

input
int(1/(a+cos(d*x+c)*a)^(3/2)/sec(d*x+c)^(5/2),x,method=_RETURNVERBOSE)
 
output
1/4/d/sec(d*x+c)^(1/2)*(2*2^(1/2)*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos 
(d*x+c)))^(1/2)+3*sin(d*x+c)*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-6*2 
^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))*cos(d*x+c)-6*2 
^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))-9*arcsin(cot(d 
*x+c)-csc(d*x+c))*cos(d*x+c)-9*arcsin(cot(d*x+c)-csc(d*x+c)))*(a*(1+cos(d* 
x+c)))^(1/2)/(1+cos(d*x+c))^2/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)/a^ 
2
 
3.4.78.5 Fricas [A] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 201, normalized size of antiderivative = 0.94 \[ \int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {9 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 12 \, {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - \frac {2 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (2 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

input
integrate(1/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(5/2),x, algorithm="fricas")
 
output
-1/4*(9*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt( 
2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - 1 
2*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) 
 + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - 2*sqrt(a*cos(d*x + c) + 
 a)*(2*cos(d*x + c)^2 + 3*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/( 
a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)
 
3.4.78.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate(1/(a+a*cos(d*x+c))**(3/2)/sec(d*x+c)**(5/2),x)
 
output
Timed out
 
3.4.78.7 Maxima [F]

\[ \int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(1/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(5/2),x, algorithm="maxima")
 
output
integrate(1/((a*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(5/2)), x)
 
3.4.78.8 Giac [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate(1/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(5/2),x, algorithm="giac")
 
output
Timed out
 
3.4.78.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {1}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int(1/((1/cos(c + d*x))^(5/2)*(a + a*cos(c + d*x))^(3/2)),x)
 
output
int(1/((1/cos(c + d*x))^(5/2)*(a + a*cos(c + d*x))^(3/2)), x)